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A B S T R A C T

The objective of this work is to investigate how Earth Observation data and processing platforms accessible on
the cloud can facilitate the implementation of REDD+ in developing countries. For that, we explore newly
available open-access satellite data, cloud processing, and a ready-made land cover map to assess the extent to
which such resources can directly respond to monitoring and measuring, reporting, and verification requisites.
Mozambique is one of the 47 countries selected to benefit from the Forest Carbon Partnership Facility to im-
plement REDD+ strategies. However, to meet funding agreements, the country needs to periodically produce
national land cover and land cover change maps at given resolution and accuracy levels. The work presented
here shows that the land cover mapping requisites of REDD+ may be quickly and cost-effectively met through
the development and use of newly available cloud resources. The study relies on an experimental design that
tests the results of image processing approaches with algorithms available or developed in Google Earth Engine
against country-wide reference data collected by a team of national experts. The results show that, in addition to
pre-processing advantages, which facilitate multi-temporal compositing and mosaicking of very large and heavy
data sets, developments in cloud processing and image classification swiftly produce large extent and high-
resolution land cover maps, tailored to a specific objective. The comparison of results between the in-house map
obtained using Google Earth Engine, and the pan-African map produced by the European Space Agency (2016)
at the same spatial resolution, reveals that both maps meet REDD+ requirements for a binary Forest/Non-forest
legend. However, the in-house map is more accurate and reaches considerably better results if a more complex,
six class IPCC legend is required. Nevertheless, this study shows that, given adequate reference data, the need to
periodically produce high resolution land cover maps for national forest monitoring purposes is no longer an
obstacle for mainstreaming the implementation of REDD+.

1. Introduction

1.1. Context and background

Deforestation is reported as the second largest anthropogenic source
of carbon dioxide (CO2) to the atmosphere, accounting for around 12%
of global gross emissions in the 1990s and 2000s (Van der Werf et al.,
2009). Although only 14% of this global forest loss is reported to occur
in sub-Saharan Africa (Harris et al., 2012), its consequences are parti-
cularly relevant here, where agriculture is central to the livelihoods of
most of its population and the current rates of deforestation are in-
creasing (Sitoe et al., 2012).

Reducing emissions from deforestation and forest degradation,
conserving and enhancing forest carbon stocks, and sustainably

managing forests represent crucial opportunities for developing coun-
tries. Such a path not only facilitates the engagement in global in-
itiatives for combating climate change, but it also induces the install-
ment of financial flows for sustainable, low carbon, development.
Through international financing mechanisms, such as the “Reducing
Emissions from Deforestation and Forest Degradation and the role of
Conservation, Sustainable Management of Forests and Enhancement of
Forest Carbon Stocks in Developing Countries” (REDD+), developing
countries can discuss the future of their forests at a higher level. This
context facilitates the adoption of actions for mitigating the effects and
promoting adaptation to climate change, while inducing sustainable
land use management and improving local livelihoods.

REDD+ requires that the cause, magnitude, and location of emis-
sions and removals of Greenhouse Gases (GHG) from forests be
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characterized and periodically quantified through credible estimates at
national and sub-national level. However, due to major data gaps and to
technical and technological complexities, this has not been easy to
achieve in tropical Africa. Thus, the establishment of credible national
forest reference levels (FRLs) and the development of adequate forest
monitoring (M) systems, which can respond to international standards,
has been a relevant obstacle for the implementation of REDD+ in
tropical countries (Romijn et al., 2012; Ochieng et al., 2016) such as
Mozambique.

Mozambique’s natural resources are being rapidly depleted: 138
000 ha of natural forests (approximately 0,3%) are lost every year, and
erosion is pervasive (MITADER, 2017). Thus, the development of
measures for conservation of the natural resource base that sustains
agriculture and forestry, particularly soils and water, is critical. To
address these challenges, the Ministry of Land, Environment and Rural
Development (MITADER) adopted several strategic actions. One of
these actions is the implementation of REDD+, which requires that
key-components, allowing the official accounting of emissions from the
land use sector, to be developed. Therefore, with the support of the
Forest Carbon Partnership Facility (FCPF) of the World Bank, MITADER
is organizing and developing a multi-stakeholder National Forest
Monitoring System (NFMS) and an operational Measuring, Reporting
and Verification (MRV) System (see www.forestcarbonpartnership.org/
mozambique for all the documentation related with the National REDD
+ Strategy in Mozambique). These key components (M&MRV) will
produce the national land cover change analysis and will support forest
monitoring activities, such as the National Forest Inventory and the
constitution of the FRL.

Our work concentrates on developing, analysing and proposing
simple, fast and low-cost solutions to facilitate the compliance of REDD
+ monitoring requisites adequate for the M&MRV activities in
Mozambique. More specifically, the work delivers the results of a pre-
liminary study designed to assist decisions regarding the development
of technical and technological configurations for the operational pro-
duction of wall-to-wall land cover maps.

1.2. The study area

Mozambique is a tropical to sub-tropical country richly endowed
with natural resources and home to important biodiversity hotspots.
The country´s mainland covers 786 380 km2 of a total 799 380 km2,
with about 13 000 km2 of insular area (CIA, 2018) and a coastline of 2
700 km (DSU, 2015). Elevation has a mean of 345 m, reaching the
lowest point at Indian Ocean and the highest point at Monte Binga (2
436 m) (World Bank, 2017). Mozambique´s climate includes two
marked seasons: a wet season from October to March and a dry season
from April to September. The lowest average rainfall occurs in southern
regions, which are drier, more so inland than towards the coast
(300–800 mm/year). Average temperatures are highest also along the
coast (25–27 °C in summer and 20–23 °C in winter), as well as in the
southern region (24–26 °C in summer and 20–22 °C in winter). High
inland regions have cooler temperatures (GFDRR, 2011).

Mozambique has a varied array of ecosystems and is biologically
diverse, encompassing 13 World Wildlife Fund (WWF) Terrestrial
Ecoregions (Olson et al., 2001). As illustrated in Fig. 1, the northern
areas are predominantly occupied by miombo woodlands and replaced
by Zambezian and Mopane woodlands in the western and southern
borders. The most widespread vegetation in the north coast is the
Zanzibar-Inhambane forest mosaic followed by the African mangroves
and the Maputaland forest mosaic in the south-east coast.

Despite Mozambique’s relevant quantities of arable land, forests,
fisheries, water and mineral resources, which translate into potentially
significant economic returns, including from agriculture and forestry
(DSU, 2015), complex socio-economic factors and the frequent occur-
rence of natural hazards, such as droughts, floods and cyclones, have
had an impact in shaping the country’s poverty and vulnerability

situation (Artur and Hilhorst, 2012). Since subsistence agriculture is
mainly rain-fed and highly dependent on natural resources, it is sig-
nificantly exposed to climate variability and to the effects of climate
change. This is particularly relevant given socio-economic factors that
also contribute to increase local vulnerability and to decrease the ca-
pacity for adaptation. Furthermore, population growth (2,5% per year)
also contributes to increase the pressure on natural resources (DSU,
2015).

1.3. Problem description

To clarify and organize the main issues associated with the devel-
opment of a national participatory M&MRV, the national REDD+
strategy (2016) includes a Road Map where the main definitions are
presented, and activities are planned (MITADER, 2016). The national M
&MRV system should, first and foremost, be able to estimate green-
house gas emissions from deforestation and forest degradation with
internationally accepted transparency, consistency, technical-metho-
dological robustness and credibility. For that, two basic inputs must be
collected and analyzed at national and sub-national level: Activity Data
(AD), which is the areal extent of deforestation, forest degradation or
forest enhancements; and Emission Factors (EF) which correspond to
carbon stock change factors.

Of the possible options to assess AD, the MRV Road Map specifies
that a spatially explicit tracking of land-use conversions over time

Fig. 1. WFF Terrestrial Ecoregions of Mozambique - EA Mang, East African
Mangroves; E Mio-Wood, Eastern Miombo Woodlands; EZ MFor-Grass, Eastern
Zimbabwe Montane Forest Grassland mosaic; M CFor, Maputaland Coastal
Forest Mosaic; SA Bush, Southern Africa Bushveld; SA Mang, Southern Africa
Mangroves; S Mio-Wood, Southern Miombo Woodlands; SR MFor-Grass,
Sothern Rift Montane Forest Grassland Mosaic; SZan-Inh CFor, Southern
Zanzibar-Inhambane Coastal Forest Mosaic; ZM Wood, Zambezian and Mopane
Woodlands; Z CFlood-Sav, Zambezian Flooded Grasslands; Z Flood-Grass,
Zambezian Flooded Grasslands; Z Halo, Zambezian Halopytics. (For inter-
pretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
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should be employed so that extended applications to the entire
Agriculture, Forestry and Other Land Use (AFOLU) sector, following the
guidelines of the International Panel on Climate Change (IPCC), can
also be achieved based on this data. This option can be fulfilled by
implementing two different approaches, both accepted by the FCPF
Carbon Fund (CF) Methodological Framework (MF) (FCPF, 2016) and
the Verified Carbon Standard (VCS) Jurisdictional and Nested REDD+
(JNR) (VCS, 2017). The first is based on systematic spatial sampling.
The other is based on wall-to-wall mapping using satellite based spatial
tracking.

Regarding the wall-to-wall land cover mapping requisites for
Mozambique, a Forest/Non-forest (F/NF) benchmark map of 2016,
derived from Sentinel-2 (S-2) imagery and a minimum overall accuracy
(OA) of 75%, is required for monitoring purposes. Nevertheless, the
disaggregation of the non-forest class (into cropland, grassland, settle-
ments, wetlands and other land) is desirable given that it constitutes a
requirement of the 2006 IPCC Guidelines for reporting purposes
(MITADER, 2016).

The national definition of forest should be used consistently over
time for all REDD+ activities. According to the MRV Road Map, forest
is defined as follow: “forest are lands that occupy at least 1 ha with canopy
cover greater than 30%, and with trees with potential to reach a height of
3 m at maturity, temporarily cleared forest areas and areas where the con-
tinuity of land use would exceed the thresholds of the definition of forest, or
trees capable of reaching these limits in situ”.

Satellite-based spatial tracking of land cover is recognized as the
most consistent, efficient, comprehensive and cost-effective approach to
produce recurrent wall-to-wall AD (deforestation/reforestation/affor-
estation) (GOFC-GOLD, 2009). However, relying on classification of
satellite images for tracking land cover change in a country as large and
complex as Mozambique presents many technical and technological
challenges. Not only is the handling of vast amounts of digital images a
technically heavy-duty endeavour, but it also entails high operational
costs (infrastructure, man-power, knowledge, time/effort). Thus, the
recent release of Google Earth Engine (GEE) (Google Earth Engine
Team, 2015), an open-access online image hub and processing plat-
form, is worth exploring. Several studies from the regional (Johansen
et al., 2015; Dong et al., 2016; Huang et al., 2017) to the continental
(Midekisa et al., 2017; Xiong et al., 2017) level, point out GEE cap-
abilities as being possibly useful for producing fast and reliable pro-
ducts for the AFOLU sector.

On another hand, the European Space Agency (ESA) launched the
Climate Change Initiative (CCI) in order to provide adequate response
for long-term satellite-based products for climate that is concerned with
addressing explicit needs of UNFCCC. In this context, ESA produced a
land cover prototype map at 20 m resolution over Africa based on the
classification of a set of Sentinel-2 A (S-2 A) images corresponding to
one year of observations (from December 2015 to December 2016).
This prototype product was released to collect user’s feedback for fur-
ther improvements. There is a web interface to visualize and interact
with the data available at http://2016africalandcover20m.esrin.esa.
int/viewer.php (CCI Land Cover team, 2016).

The aim of this study is to provide a base for the fulfilment of
AFOLU wall-to-wall monitoring requisites in Mozambique and illustrate
the usefulness, cost-effectiveness, and efficacy of open source data and
technology in fulfilling the requirements of specific international po-
licies, while contributing to advance the achievement of national de-
velopment goals. The main objectives are (1) to investigate how Earth
Observation data and online processing platforms freely accessible on
the cloud can facilitate the gathering of wall-to-wall information
(adequate for unleashing the process of generating AD) and to evaluate
if the result fulfils REDD+ requisites for Mozambique; and (2) to
evaluate the extent to which a freely available land cover map – the
20 m resolution ESA CCI prototype map for 2016 – is able to fulfil the
REDD+ requisites for Mozambique; and (3) to compare the results of
objective (1) and (2).

2. Methods

2.1. Data and implementation tools

2.1.1. The reference data set
The MRV Road Map presents three hierarchical levels (level 1: IPCC

legend with 6 classes; level 2: national classification legend with 21
classes; and level 3: national classification legend with 42 classes) for
the land cover classification system in Mozambique (presented in
Table 4 of MITADER (2016) MRV Road Map). The reference data set
used in this study was produced based on a classical on-screen deli-
neation of polygons over satellite imagery through a purposive homo-
geneous sampling of each legend category at level 3, in order to provide
a balanced, national scale coverage for all classes. For that, a team of
five experienced experts from the official MRV team of Mozambique
analyzed Very High-Resolution images and manually digitized 28 317
polygons, ranging between 0,1 ha to 100 ha.

2.1.2. Satellite images
The work presented here relies on two different image collections

available through GEE. The first is derived from the MODerate-resolu-
tion Imaging Spectroradiometer (MODIS) mounted on both the Terra
and Aqua satellites, which deliver complete coverage twice a day. The
second results from S-2, which was recently made available by ESA, and
delivers complete coverage every 5 to 10 days.

In this study we use the combined 16-day Normalized Difference
Vegetation Index (NDVI) product derived from MODIS MCD43A4 (NASA
LP DAAC, 2015). This includes a time series of 500 m resolution composite
images, each resulting from the processing of daily surface reflectance
observations, acquired by Terra and Aqua sensors, within a 16-day period,
from which the best representative pixel is selected (Schaaf and Wang,
2015). The daily composites, produced in the sinusoidal projection,
minimize clouds and cloud shadows and are used to produce the NDVI
time series. NDVI is computed using the near-infrared and red bands of
each composite image, ranging between -1,0 and 1,0.

The S-2 sensor is identified as the main source of remotely sensed data
for deriving land cover information in the MRV Road Map of Mozambique.
The mission was launched on the 23rd June 2015 and provides a global
coverage of the Earth’s land surface every 10 days with S-2 A satellite and
every 5 days with S-2 A and Sentinel-2B (S-2B, launched on the 7th March
2017). This mission offers high-resolution optical imagery with a spatial
resolution of 10 m, 20 m and 60 m and multi-spectral data with 13 bands
in the visible, near-infrared and short-wave infrared parts of the spectrum.
The processing Level-1C of S-2 A, available in GEE, is used in this study to
generate the land cover classification. The Level-1C product is composed
of 100 × 100 km2 tiles (ortho-images in UTM/WGS84 projection) in top-
of-atmosphere reflectance.

2.1.3. Feature data sets
The administrative boundaries of Mozambique used in our study to

define the spatial extent of the land cover maps are freely available at
GADM, 2015. This data set also contains lower level subdivisions such
as provinces and districts. Additionally, the WWF Terrestrial Ecoregions
boundaries of Mozambique included in this study, were acquired from a
vector data set that contains the 825 terrestrial ecoregions of the world
nested within two higher-order classifications: biomes (14) and bio-
geographic realms (8) (Olson et al., 2001).

The 20 m resolution ESA CCI prototype map for 2016, henceforth
designated by ESA CCI map, uses a legend that includes 10 classes:
“trees cover areas”, “shrubs cover areas”, “grassland”, “cropland”,
“vegetation aquatic or regularly flooded”, “lichen and mosses/ sparse
vegetation”, “bare areas”, “built up areas”, “snow and/or ice” and
“open water”. To produce this map, the CCI team applied two different
classification procedures to the S-2 A multi-temporal data set in top-of-
canopy reflectance to generate two preliminary maps. The first is a
supervised random forests algorithm and the second consists of
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unsupervised machine learning algorithms. The two preliminary maps
were then combined, using a rule-based procedure, to select the best
representation of a land cover class (Ramoino et al., 2016). For a full
description of the algorithms used see Ramoino et al. (2016). The ESA
CCI map is freely available and can be downloaded with a size of ap-
proximate 6GB (CCI Land Cover team, 2016). For this study we used
ESA CCI prototype map version 1.0.

2.2. Experimental set-up

2.2.1. Organization of the legend
A fundamental step in our analysis consists on the organization of the

legend established in the MRV Road Map for land cover mapping (Annex
A - Table A1). The reference data set used in this study was compiled by
the MRV team at level 3 of the legend (presented in Table 4 of MITADER
(2016) MRV Road Map) and, as a pre-processing step, it was then ag-
gregated by the MRV team and provided to us at level 2. An aggregation of
classes into level 1 categories is needed to fulfill three objectives: i) To
improve the separability of the land cover classes in spectral / feature
space; ii) To obtain consistency in the spectral dynamics – phenology -
within each class, such as observed in same-year multi-date imagery; and
iii) To ensure compatibility and comparability with the legend of other
ready-made land cover maps available from international agencies, such
as the ESA CCI map. Nevertheless, since the legend structure is hier-
archical, several exercises can be easily attempted at different levels of the
legend to address the targeted land management purposes. For REDD+
purposes, the legend can be as simple as F/NF.

Since the MRV Road Map states that the non-forest classes should be
disaggregated into the IPCC legend (level 1), our validation assessments
target two levels: level 1 (IPCC) and level 0 (F/NF). Table A1 illustrates the
aggregation applied to the MRV Road Map land cover legend into F/NF
and the correspondence of categories with the recently produced ESA CCI
map. The codes along the ESA CCI map column (Table A1) represent the
original class values of the product. For the purpose of this study, the
classes were reclassified into level 1 and level 0 (e.g. code 4 stands for
“Cropland” within the original ESA CCI map, but it was reclassified into
code 1 - “Cropland” for level 1 and into code 2 - “Non-Forest” for level 0).
The level 2 corresponds to the data polygons collected and provided by the
MRV team and used here as the reference data set. Those polygons were
reclassified into level 1 and level 0 according to the classes presented in
Table A1 (e.g. codes 31 – “Grasslands”, 32 – “Thicket” and 33 – “Shrub-
land” in level 2 were reclassified into code 3 - “Grassland” for level 1 and
into code 2 – “Non-Forest” for level 0).

2.2.2. Constitution of the training and validation data sets
The training set to build the image classifiers relied entirely on a

sample of 7 113 polygons (covering approximately 190 545 pixels)

resulting from the application of a stratified random sampling proce-
dure to the reference data set. Computation limits of GEE determine the
maximum number of pixels that can be used for training. The validation
data set corresponds to a stratified random selection of 20 837 polygons
(covering approximately 561 606 pixels) from the remainder set of
reference polygons.

To address the two levels of the legend used in this study (level 1 –
IPCC and level 0 – F/NF), the polygons selected for training and vali-
dation were reorganized following the hierarchy and according to the
codes shown in Table A1 and as explained in 2.2.1.

2.3. Map production procedures

2.3.1. Production of a cloud and shadow free 2016 image mosaic of
Sentinel-2 images covering the entire country

The production of a radiometrically harmonious image mosaic,
which is mostly cloud and shadow free, and does not present inter-
frame radiometric differences or frame boundary seams, is very im-
portant for country-wide classification purposes. Thus, the production
of a good-quality S-2 mosaic that results from the best possible com-
positing of multi-temporal S-2 images using GEE, is worth exploring.

Compositing techniques have been widely used to produce good
quality image mosaics for large extents in tropical regions (Mayaux
et al., 1999; Cabral et al., 2003; Stibig et al., 2003; Eva et al., 2004).
The process consists of composing a new image by selecting the best
possible pixel from a set of same position pixels in a multi-temporal
image stack. In tropical regions, we can optimize the set of images to be
used in a compositing process by excluding those corresponding to the
wet-season. Additionally, profiling “large units of land containing distinct
assemblages of natural communities sharing a large set of species, dynamics,
and environmental conditions” (Olson et al., 2001) separately may reduce
radiometric effects or boundary seams caused by phenological differ-
ences in the composite images.

To implement the above principles, a set of multi-temporal S-2 A
images retrieved between the peak and the end of the growing season
were processed in GEE for 2016. However, the length of the growing
season varies significantly across the territory of Mozambique, which
spans a wide range of ecosystems as illustrated in Fig. 1. Hence, the
image compositing outcomes may be optimized if the dates for the peak
and the end of the growing season vary spatially according to the
ecoregions of the country.

To determine the dates for the peak and end of the growing season
of each ecoregion of Mozambique we analyzed the MODIS Combined
16-day NDVI product in GEE. The NDVI time-series profile (from
2011–2015) was computed for each WWF Terrestrial Ecoregion and the
period between the peak and end of the growing season was extracted
for each region. Fig. 2 represents the peak and end of the growing

Fig. 2. NDVI Trends for Southern Zanzibar-Inhambane coastal
forest mosaic WWF terrestrial ecoregion. Dashed gray vertical
lines define the period of the year considered for applying the
processing algorithm (from the peak of the growing season to the
end of the season). The green lines show the daily NDVI behaviour
for the years 2011–2015 for the same ecoregion (For interpreta-
tion of the references to colour in this figure legend, the reader is
referred to the web version of this article.).
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season for one of the ecoregions in Mozambique within 5 years
(“Southern Zanzibar-Inhambane coastal forest mosaic WWF terrestrial
ecoregion”). This procedure was carried out for all WWF ecoregions
that occur in Mozambique to define the period in which the S-2 images
would be selected to build the composite image for 2016. Taking the
example presented in Fig. 2, S-2 images for that specific ecoregion were
selected between day 97 and day 280 (approximately).

S-2 A imagery from the periods determined through the NDVI time-
series for each ecoregion was processed using an algorithm that selects
the best available cloud-free pixel for the given period. The algorithm is
an adaptation of the Landsat-based Phenology Based Synthesis
Classification using Google Earth Engine (Simonetti et al., 2015), which
generates cloud/shadow S-2 masks and excludes non-eligible pixels in a
compositing procedure that is based on the computation of the median
value among the available dates for each pixel. The procedure is driven
by a predefined rule-based reasoning built upon spectral properties,
together with morphological filters to fill holes and buffering the edge,
usually characterized by thin clouds or haze that causes classification
confusions (Simonetti et al., 2015).

After compositing all bands individually at their original resolu-
tions, the blue, green, red and near-infrared bands of S2-A (originally
10 m resolution) were resampled to 20 m using the mean value of the
contributing original pixels and, together with the vegetation red edge
bands, narrow infra-red, and the short-wave infrared bands, were ar-
ranged in a final resulting image. This image at 20 m resolution serves
as an input for the classifications that, after post-processing, result in
the final land cover map. The processing chain for producing the image
mosaic is illustrated in Fig. 3. The GEE script used to build the mosaic
over Mozambique is available at: https://code.earthengine.google.
com/f3ed7c8622b50202f7fbd376baba6103.

2.3.2. Classification of the Sentinel-2 mosaic
Machine learning (non-parametric) algorithms, such as artificial

neural networks, decision trees, support vector machines and ensembles
of classifiers, have been emerging as appropriate and efficient alter-
natives to conventional parametric algorithms (e.g. maximum like-
lihood), because non-parametric algorithms do not make any assump-
tions regarding frequency distribution of the remotely sensed data,
which rarely have normal distributions. Furthermore, ensemble
learning algorithms like random forests, are more accurate and robust
to noise than single classifiers (Rodriguez-Galiano et al., 2012; Belgiu
and Drăguţ, 2016).

In our study we used random forests in a supervised classification
procedure. A random forest classifier consists of a combination of tree
classifiers where each classifier is generated using a random vector
sampled independently from the input vectors. Then, each tree of the
ensemble casts a unit vote to classify the input vectors (Pal, 2005)
corresponding to each pixel. The most popular class (majority of votes)

is attributed to the pixel. This algorithm can run efficiently on large
data bases; can handle thousands of input variables without variable
deletion; gives estimates of what variables are important in the classi-
fication; it generates an internal unbiased estimate of the generalization
error; it computes proximities between pairs of cases that can be used in
location outliers; it is relatively robust to outliers and noise; and it is
computationally lighter than other tree ensemble methods (Rodriguez-
Galiano et al., 2012).

A supervised classification was performed using the GEE random
forest classifier “ee.Classifier.randomForest” to generate a land cover
map corresponding to level 1 of the legend. The number of trees was set
to 30, which is the maximum possible in GEE for the number of training
pixels used here, and the remainder arguments were left with default
values.

2.3.3. Post-processing
In order to obtain a final map compliant with the minimum map-

ping unit (MMU) of 1 ha, a post-classification operation was applied.
This operation identifies raster clusters that are smaller than 1 ha (less
than 25 contiguous pixels) and replaces the corresponding pixels with
the value of the largest neighbouring cluster. However, GEE does not
provide a method to easily implement this operation nor does it have
sufficient computation power to perform such neighbour-based opera-
tions in a large data set context. The classified maps were exported to a
Desktop-PC and the Geospatial Data Abstraction Library (GDAL) “Sieve”
command available in Quantum GIS (QGIS) was used for the procedure.
The result was imported again into GEE. The exact same procedure was
applied to the ESA CCI map.

To assess the results for level 0 of the legend, for both the In-house
Land Cover map and the ESA CCI map over Mozambique, the level 1
maps were reclassified following the hierarchy presented in Table A1.

2.4. Validation of the land cover maps

The validation of the land cover maps followed the good practices
for estimating area and assessing accuracy (Olofsson et al., 2014). As
explained in Section 2.2.2, after selecting the training polygons from
the reference data set, the validation sample sizes were defined based
on the remainder set of polygons available. Both training and validation
data sets were selected using a stratified random design. Since the va-
lidation sample sizes were already defined (20 837 polygons), the ap-
proach was to evaluate if the validation data was sufficient to reach a
given standard error. For that, we used the sample estimation formula
from Olofsson et al., 2014.

Following the recommendations of Olofsson et al. (2014), the total
number of samples needed to obtain an unbiased estimate of map areas
was assessed for all maps. Additionally, to define the number of vali-
dation plots necessary for each map, a target standard error of 0,01 for

Fig. 3. Mosaic processing chain. The NDVI time-series profile is used to select the peak and end of the growing season period for each WWF Terrestrial Ecoregion that
spans Mozambique. Sentinel-2 A imagery is then processed using rules in a pixel-based algorithm built upon spectral properties.
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the OA was defined.
The expected value for the user’s accuracy (UA) for each strata

(class) was defined to be 0,7 for the “Non-Forest” classes (“Cropland”,
“Grassland”, “Wetlands”, “Settlements” and “Other Land”) and 0,8 for
“Forest”. The result showed that the total number of validation samples
needed for the In-house Land Cover map at level 1 (Map A) and for the In-
house Land Cover map at level 0 (Map C) is 1896 and for the ESA CCI map
at level 1 (Map B –) and the ESA CCI map at level 0 (Map D) is 1920.
Considering the results obtained for the stratified random sample de-
sign, the validation data set that we are using, which contains 20 837
polygons, is suitable for providing an unbiased accuracy assessment and
estimating map areas.

Each map was compared against the validation data set and error
matrices were computed using pixel counts by applying the method
“ee.errorMatrix” in GEE. Because of computation limitations an error
matrix was generated for each province separately and then the in-
dividual results were added to obtain a single error matrix for each
map.

Error matrices in terms of estimated area proportions were then
derived for each map along with parameters such as OA, UA and pro-
ducer’s accuracy (PA). The area for each class was estimated according
to the classification based on the validation data. Since the map classes
were defined as strata and a stratified random sampling was applied, we
used a stratified estimator of OA (see Olofsson et al., 2014: Eqs. (5)) and
a stratified estimator of area (see Olofsson et al., 2014: Eq. (9) and (10))
to compute the standard errors. The Margins of Error (ME) for a 95%
Confidence Interval (CI) were assessed for the OA and for the area es-
timates.

In addition, a logistic Geographically Weighted Regression (GWR)
was used to analyse spatial variations in the OA for both land cover
maps at level 1. The GWR approach uses a moving kernel window to
compute local estimates of the regression coefficients and applies a
distance weighting to the data. The validation class (dependent vari-
able) was logistically regressed on the classified class (independent
variable) using the centroid within each validation polygon and the
classified data at that exact point. The logistic geographically weighted
regressions were calculated as follows:

= = +pr y b b x( 1) logit( )i 0 1 1ui vi ui vi( , ) ( , )

where =pr y( 1)i is the probability that the validation class is present,
x1i is the independent variable (the presence of the classified class) and
the coefficient estimates for the independent variable are assumed to
vary across the two-dimensional geographical space defined by the
coordinates (u, v). Thus, the coefficient estimates in the logistic GWR
are functions of these coordinates. In this case we calculated local

models at each location on a 1 km grid. These calculations were per-
formed in R (packages “rgdal”, “spgwr” and “GISTools”). More detailed
information can be found in Comber et al. (2012) in the reference
section.

3. Results and discussion

3.1. Mosaicking

S-2 cloud-free mosaics over the tropical belt will be soon available
for download and are currently accessible for visualization at: http://
forobs.jrc.ec.europa.eu/recaredd/map/. The later results use equivalent
pixel-based algorithms to those used here, but select from a much wider
set of images, covering all the S-2 A and S-2B imagery available from
October 2015 to October 2017. The MRV Road Map for Mozambique
identified the need to produce a benchmark map for 2016, which will
complete the historical AD analysis and serve as a starting point for
MRV purposes of all REDD+ activities. This requirement reduces sig-
nificantly the number of cloud-free pixels, candidates in the compo-
siting process (median value of all S-2 A data after cloud masking) and
increases the likelihood of having some positions with no data.
However, selecting imagery available from the peak to the end of the
growing season, assuming similar biological features, excludes the most
clouded scenes from the selection domain and reduces boundary seam
effects. The mosaic built in this study had a few pixels with no data
(corresponding to 0,0016% of the total area), mostly in sand banks,
where the algorithm confuses the spectral signature with clouds, an
aspect that could represent a challenge for local or regional applica-
tions. This approach generates homogeneous single-year clean mosaics
of S-2 (Fig. 4), which that can be used for monitoring purposes, without
almost any human interaction. The inclusion of S-2B imagery in the
selection domain could potentially improve the quality of the mosaic by
duplicating the number of selection possibilities and will be explored in
the future.

Before the availability of S-2 in GEE, two 2016 bottom-of-atmo-
sphere S-2 A mosaics were produced for the wet and dry season using
traditional processing approaches (desktop solutions running proprie-
tary software). However, not only do the resulting mosaics present re-
levant radiometric problems with sharp differences among S-2 A
neighbouring frames, but also still have abundant clouds and shadows.
Additionally, the software and computing arrangements needed, as well
as the complexity of the processing workflow, decrease the possibility
of repetitions.

Fig. 4. Mosaic parts displayed with a RGB false color composite using top-of-atmosphere reflectance of S-2 bands B11, B08, and B04 at spatial resolution of 20 m for
A) Gaza Province, B) Gorongosa Park and C) Cahora Bassa Lake.
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3.2. Classification and map validation

The final maps are presented in Fig. 5 and their respective accuracy
assessment is presented in Table 1, where the area estimates per class
are presented in proportion to the total area along with PA, UA and OA.
The ME was assessed for a 95% CI. The error matrices in terms of area
estimates are presented in Annex A - Tables A2 and A3. All maps are
publicly available as GEE assets at:

• Map A – In-house Land Cover map at level 1: (https://code.
earthengine.google.com/?asset=users/catarinagouveialopes/1_

Paper/Mozambique/Moz_LandCover_MMU_20m_L1).
• Map B – ESA CCI map at level 1: (https://code.earthengine.google.

com/?asset=users/catarinagouveialopes/1_Paper/Mozambique/
Moz_ESA_CCI_MMU_20m_L1).

• Map C– In-house Land Cover map at level 0: (https://code.
earthengine.google.com/?asset=users/catarinagouveialopes/1_
Paper/Mozambique/Moz_LandCover_MMU_20m_L0).

• Map D – ESA CCI map at level 0: (https://code.earthengine.google.
com/?asset=users/catarinagouveialopes/1_Paper/Mozambique/
Moz_ESA_CCI_MMU_20m_L0).

Fig. 5. Land cover maps: A: Level 1 - In-house Land Cover map (20 m); B: Level 1 - ESA CCI map (20 m); C: Level 0 - In-house Land Cover map (20 m); D: Level 0 - ESA
CCI map (20 m).
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As illustrated in Fig. 5, level 0 land cover classes have a similar
spatial distribution between the In-house Land Cover map and the ESA
CCI map, reaching approximately 90,5 ± 0,4% and 88,5 ± 0,4% in
OA, respectively and having very similar estimated areas for the two
classes. Both maps fulfill the REDD+ requisites (OA > 75%) for the F/
NF classes. However, when comparing level 1 maps, large differences in
spatial arrangement and proportion are observed in the non-forest
classes. The accuracies achieved in the In-house Land Cover map are
significantly higher than those achieved in the ESA CCI map. By looking
at the accuracy assessment results of the two maps at level 1 (Table 1),
one can see that higher PAs are present in the In-house Land Cover map
for “Cropland” (79,8% vs. 31,9%), “Forest” (88,1% vs. 80,7%), “Set-
tlements” (6,2% vs. 3,8%) and “Other Land” (39,3% vs. 0,3%) when
compared to the ESA CCI map. Both maps revealed low commission
errors, however in the ESA CCI map the class “Cropland” revealed a
lower UA (41,9%) and it is largely misclassified by confusion with
“Forest” and “Other Land”. The class “Settlements” presents a very low
PA, both in the In-house Land Cover map (PA = 6,2%) and in the ESA
CCI map (PA = 3,8%), which entails that both maps underestimate
settlement areas. This difficulty maybe a result of the nature of settle-
ments in most rural areas, with houses built using raw materials (such
as adobe walls and straw roofs) and spread over a background (mostly
soil) similar to agricultural lands or woodlands and in many instances
mixed with trees and other vegetation.

The class “Grassland” reveals a lower PA in the Land Cover map
(PA = 69,6%) when compared to the ESA CCI map (PA = 74,8%),
which is mainly due to a misclassification of “Grassland” as “Forest”.
The ESA CCI map also reveals this type of confusion, but with lower
percentage levels of error between the two classes. However, the class
“Grassland” reveals lower UA (UA = 17,9%) in the ESA CCI map, than
in the In-house Land Cover map (UA = 55,7%).

When compared with the In-house Land Cover map, the major is-
sues identified on the ESA CCI map are: (1) the presence of spatial in-
consistencies, most likely related to the mosaicking process; (2) the
spatial resolution which does not correspond exactly to the reported
20 m (Lesiv et al., 2017) and (3) significant classification errors, which
were also reported in Lesiv et al. (2017) for the entire African continent.
As for the In-house Land Cover map, the main issues are: (1) smoothing
of spectral differences between classes during the compositing process
(median value among the available dates for each pixel) may affect the
classification results. This aspect is particularly problematic when fa-
cing extreme weather conditions. In fact, the rainfall behavior at the
end of 2015 (October – December) was significantly below average in
almost the entire South and Central region of Mozambique. Also, in the

second period of the 2016 wet-season (January – March), the entire
Southern part of the territory, including Sofala, South Manica and
North of Niassa, suffered a significant rainfall deficit. Additionally, in
2016, the Southern region of Mozambique was severely affected by
drought, which resulted in losses of almost all planted crops in the main
growing season (ONU, 2016). This drought in the southern regions may
have had implications on the standard spectral differentiation of dif-
ferent features. Such implications may have introduced confusion re-
sulting in lower accuracies in that region, (2) there can be large dif-
ferences in the reflectance values between the pick and end of the
growing season in regions where not enough valid observations were
present to compute the median, (3) polygons in the training set may
contain mixed spectral signals, and even though we did not tamper with
the reference data collected independently by the MRV Unit team,
avoiding mixed polygons could have improved the results, (4) the size
of the training sample is small in some regions.

Lesiv et al. (2017) reported an OA of approximately 65% for the ESA
CCI 20 m prototype map for Africa using two independent data sets,
where the OA throughout Mozambique shows lower accuracies in the
South and higher accuracies in the North, ranging between 22–65%.
Here, a spatially explicit distribution of the OA of both the In-house
Land Cover map and the ESA CCI map, computed through GWR, are
presented based on results obtained with our validation data set.
Table 2 summarizes the OA spatial variation and displays the inter-
quartile range (IQR) obtained in both cases whereas the maps in Fig. 6
illustrate these variations.

Regarding the response design, Stehman and Wickham (2011)
stated that, despite polygons being more prone than pixels (or blocks of
pixels) for representing actual earth surface features, it is difficult to
design and implement an accuracy assessment using polygons as the
spatial assessment units. An alternate response design could be ob-
tained by implementing the sampling of one or more pixels within each
validation polygon. However, Zhen et al. (2013) reported a 9% bias in
the OA when a simple random selection of pixels from validation
polygons, i.e. not used for training, but members of the same reference

Table 1
Level 1 and Level 0 accuracy assessment for both maps: Estimated area per class in proportion to the total area, overall accuracy (OA), producer’s accuracy (PA),
user’s accuracy (UA) and margin of error (ME) for a 95% confidence interval.

Level 1 A: 20 m In-house Land Cover map B: 20 m ESA CCI map

Estimated area ± ME (%) PA (%) UA (%) OA ± ME (%) Estimated area ± ME (%) PA (%) UA (%) OA ± ME
(%)

Cropland 20,1 ± 2,7 79,8 58,8 70,7 ± 0,7 18,1 ± 3,1 31,9 41,9 45,5 ± 0,6
Forest 37,8 ± 1,2 88,1 85,2 36,8 ± 1,3 80,7 86,2
Grassland 15,8 ± 3,7 69,6 55,7 12,0 ± 4,4 74,8 17,9
Wetlands 11,5 ± 3,7 50,0 72,5 15,3 ± 3,5 55,5 55,5
Settlements 3,5 ± 7,7 6,2 83,3 3,2 ± 8,3 3,8 90,4
Other Land 11,4 ± 4,0 39,3 77,0 14,7 ± 3,7 0,3 80,0

Level 0 C: 20 m In-house Land Cover map D: 20 m ESA CCI map

Estimated area ± ME (%) PA (%) UA (%) OA ± ME (%) Estimated area ± ME (%) PA (%) UA (%) OA ± ME
(%)

Forest 37,0 ± 1,0 90,1 85,2 90,5 ± 0,4 36,5 ± 1,2 81,4 86,2 88,5 ± 0,4
Non-Forest 63,0 ± 0,6 90,8 94,0 63,5 ± 0,7 92,5 89,6

Table 2
Summary on the variation of the overall accuracies for both maps assessed
through GWR.

Maps Min. 1stQu. Median 3rdQu. Max. IQR

In-house Land Cover map 0,7985 0,8154 0,8216 0,8217 0,9103 0,0063
ESA CCI map 0,5260 0,5672 0,5710 0,5805 0,7820 0,0133
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data set, were used to assess accuracy. In the present study, the maps
were validated with a random sample for the available polygon data
set. Yet, for the GWR implementation only the centroid (pixel value)
within each validation polygon was used to derive the spatially explicit
OA, so the GWR results contain bias, which can be verified by com-
paring the OA obtained in the error matrices to the GWR results.
Nevertheless, the GWR makes it easier to compare the spatial dis-
tribution of error between the two maps and shows which are the re-
gions that need further improvement on the reference data set. The IQR
(Table 2) shows that there are greater spatial variations in the re-
lationships between classified and validation data for the ESA CCI map.

Even though OA shows a much wider range of values, and an overall
poorer performance, in the case of the ESA CCI map when compared
with the In-house Land Cover map, it must be pointed out that this may
be a consequence of the fact that, in the latter, both the training and
validation data sets (however disjoint and randomly defined) are drawn
from the same reference set. This entails, that any existing spatial bias
will be mirrored in both de training and validation sets and thus dis-
crepancies in the correspondence between the classified and observed is
minimized. Thus, it cannot be excluded that the consistent spatial
pattern in the distribution of accuracies is a reflection of a spatial bias in
the validation data set.

3.3. Adequacy of GEE for land cover mapping and REDD+

Activity data for land cover changes, like deforestation, are mostly
derived using satellite-based techniques. However, this is often costly
and requires significant expertise, which can be impeditive for devel-
oping countries. The availability of a free cloud computing platform,
which stores petabytes of satellite data that can be integrated with tools
like Collect Earth and which provides easy to implement pre-prepared
scripts, is a stepping stone for developing countries to demonstrate
compliance with international agreements on climate change. Countries

are required to establish MRV systems aligned with existing NFMS and
provide national and annually estimates of changes in forest carbon
stocks and emissions following specific terms of quality assurance and
quality control. VCS JNR requires a minimum overall accuracy of 75%
for the F/NF maps as well as an uncertainty analysis of the Land Use
Land Cover Changes (LULCC) map (AD) (Olofsson et al., 2014). Ac-
cording to FCPF CF MF, the uncertainty associated with the AD should
be propagated to estimate the uncertainty of emission reductions using
Monte Carlo methods. Additionally, according to both VCS JNR and
FCPF CF MF terms, carbon changes associated with forest degradation
should also be reported. In this study, forest degradation is not ad-
dressed, although Sentinel-1 data available in GEE could represent a
valuable asset to explore transitions within the forest classes when there
is a loss of carbon sequestration.

Midekisa et al. (2017) presented an approach to process LULCC
maps, over a 15-year time period for Africa, using GEE and Landsat
imagery along with NDVI and Normalized Difference Water Index
(NDWI), showing once again the capabilities of GEE for dealing with
big earth observation data. However, the training and validation data
were only available for a single year and the pixel median within a
three-year window was used to build the annual composites. Also, the
total amount of training (5 664 pixels) and validation (1 420 pixels)
data is considerably lower when compared to the amount of training
data used to derive the In-house Land Cover map and to validate all
maps in this study. Here, we demonstrate how to produce a cloud/
shadow-free mosaic and a single land cover map for 2016 that fulfils
REDD+ requirements, through the GEE cloud platform. The same exact
procedure can be applied for upcoming years, by creating new mosaics
and updating the reference data set, to generate new F/N and LULCC
maps with adequate accuracy levels, indicating that the effort should
therefore be employed in obtaining good quality and representative
reference data.

Nevertheless, some limitations of GEE were found throughout the

Fig. 6. Spatially distributed overall accuracy (OA) of both the In-house Land Cover map (E) and the ESA CCI map (F) at 1 km resolution. Values in the legend
represent the probability of the presence of the correct class.
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processing within this scale and amount of data. Firstly, the maximum
number of training polygons possible (7 113 polygons) and the max-
imum number of trees for the random forest classifiers (30) were lim-
iting for our case study. If both the training sample and the number of
trees used in the random forest classifier could have been increased, it is
very likely that the classifier would have performed better, thus in-
creasing the classification accuracy. Secondly, operations that are area
influenced by arbitrary distant inputs, such as clustering algorithms,
perform poorly in GEE (Gorelick et al., 2017) and this is an important
bottle-neck. This is the reason why it was not possible to apply the
MMU to the classifications in GEE and parallel software had to be
employed, with a reduction of efficacy. To overcome this type of pro-
blems when dealing with large extents, the integration of open source
geospatial analytic tools (e.g R and QGIS) could facilitate the im-
plementation of such operations. Computational limitations were also
found when creating an error matrix using the amount of validation
polygons available (20 837 polygons). Despite not being possible to
obtain a one-step error matrix, it was possible to obtain an error matrix
for each province of Mozambique, and then aggregate each single error
matrix into a final one. We concluded that, when dealing with this
amount of data, some processes can be performed outside GEE, when-
ever it is more efficient. Furthermore, the system is entirely responsible
for deciding how to run a computation, so the user is unable to access or
influence how the system handles computations, which represents some
challenges (Gorelick et al., 2017). Nevertheless, Gorelick et al., (2017)
addressed that research and experiments are ongoing in order to
overcome some of the GEE limitations.

Despite the restrictions, GEE proved to be a reliable and robust asset
for achieving considerably good results which can support developing
countries in rapidly producing low cost, but valid, activity data. Thus,
given the currently established calendar for the Green Climate Fund
(GCF) pilot program, countries that did not yet submit their Forest
Reference Emission Levels (FREL) together with their National
Communication or Biennial Update Reports, could eventually still be-
come ready to access the GCF program and obtain performance pay-
ments in the 2020–2022 time window.

Once complete processing chains are developed and established
(possibly including high quality pre-processing of dense image time
series), allowing the user to manipulate only simple inputs, such as
geographic extent, time boundaries, reference data, and output defini-
tion, one can envision the possibility of expedite production of high
quality maps for land cover monitoring; be it for REDD+, sustainable
management in the AFOLU sector, or other purposes. Also, the freely
available ESA CCI prototype map at 20 m resolution delivers satisfac-
tory results at the F/NF level for Mozambique. Depending on the fre-
quency with which such maps are made available, they could provide
good alternatives to the production of in-house maps and activity data,
at almost no cost.

4. Conclusions

Producing land cover maps in compliance with the established ac-
curacy levels for countries as large and complex as Mozambique is
challenging and has often led to large investments and poor results.

Here, we illustrate how to use the GEE cloud platform and free imagery
can deliver high resolution and wall-to-wall land cover maps for
Mozambique, which are fully compliant with the national and REDD+
requisites. Additionally, we investigate the extent to which a freely
available map - the 20 m resolution 2016 ESA CCI prototype map - can
also comply with those requisites.

This study is a demonstration that, despite some current limitations,
a cloud computing solution such as GEE, operating over freely available
satellite image repositories, can directly overcome an identified tech-
nical and technological bottle neck in REDD+. Countries can now rely
extensively on cloud and open source satellite image data bases to de-
liver national and annual estimates of forest area and their change,
according to the requirements of REDD+/MRV systems.

Even though this study only presents one case for producing land
cover maps, very similar procedures could be employed for mapping
forest change if adequate reference data sets were available. However,
we conclude that given the possibilities opened by cloud computing and
big data analysis, which can take many technological and technical
difficulties away from operational production, more effort should be
employed in the collection of highly representative and low uncertainty
reference data sets. Moreover, high speed internet access and continued
support to the implementation of the correct technical procedures at
several levels can accelerate access to performance-based payments for
development.

Given these conclusions, it is apparent that investing in the long-
term technical coaching of key institutions and staff in developing
countries may be a better strategy than providing information tech-
nology or delivering short and very specialized technical capacity for
image processing. The cloud is universal and using it can be done from
anywhere without requirements other than an adequate internet access.
Thus, important advances can now be obtained, and major steps be
taken to facilitate and accelerate the access of more developing coun-
tries to REDD+ and the GCF.
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Table A2
Level 1 accuracy assessment for both maps: the error matrices in terms of estimated area proportions, overall accuracy (OA), user’s accuracy (UA), producer’s
accuracy (PA), mapped area and estimated area. The Margins of error (ME) were calculated for a 95% confidence interval.

A: Level 1 - In-house Land Cover map (20 m)

OA (%) ME (%) # Reference

70,7 ± 0,7 Cropland Forest Grassland Wetlands Settlements Other Land Total UA (%)

# Mapped Cropland 0,16010 0,01358 0,01936 0,01574 0,02570 0,03788 0,27235 58,8
Forest 0,01346 0,33317 0,02034 0,01781 0,00011 0,00619 0,39108 85,2
Grassland 0,01816 0,02475 0,10980 0,02189 0,00062 0,02176 0,19697 55,7
Wetlands 0,00727 0,00495 0,00618 0,05736 0,00060 0,00272 0,07908 72,5
Settlements 0,00001 0,00000 0,00000 0,00001 0,00217 0,00041 0,00260 83,3
Other Land 0,00159 0,00186 0,00211 0,00192 0,00583 0,04461 0,05792 77,0
Total 0,20059 0,37831 0,15778 0,11472 0,03502 0,11358 1

PA (%) 79,8 88,1 69,6 50,0 6,2 39,3 Total
Mapped Area (ha) 21 504 523 30 879 579 15 552 590 6 243 776 205 380 4 573 139 78 958 986
Estimated Area (ha) 15 838 012 29 870 742 12 458 503 9 058 167 2 765 159 8 968 403
ME (ha) ± 420 546 ±365 768 ±462 887 ±333 687 ±212 503 ±356 435

B: Level 1 - ESA CCI map (20 m)

OA (%) ME (%) # Reference

45,5 ± 0,6 Cropland Forest Grassland Wetlands Settlements Other Land Total UA (%)

# Mapped Cropland 0,05774 0,01638 0,01372 0,01087 0,01382 0,02522 0,13774 41,9
Forest 0,01345 0,29685 0,01625 0,01588 0,00014 0,00181 0,34438 86,2
Grassland 0,10980 0,05305 0,08943 0,11703 0,01616 0,11326 0,49873 17,9
Wetlands 0,00027 0,00137 0,00010 0,00960 0,00017 0,00579 0,01731 55,5
Settlements 0,000004 0,000004 0 0,00001 0,00121 0,00011 0,00133 90,4
Other Land 0 0 0,00001 0,00008 0,00001 0,00040 0,00050 80,0
Total 0,181261 0,367658 0,119511 0,153467 0,031505 0,146598 1

PA (%) 31,9 80,7 74,8 55,5 3,8 0,3 Total
Mapped Area (ha) 10 876 056 27 191 726 39 379 535 1 366 505 105 317 39 847 78 958 986
Estimated Area (ha) 14 312 200 29 029 896 9 436 438 12 117 567 2 487 621 11 575 265
ME (ha) ±448 213 ±367 090 ±411 598 ±429 935 ±205 560 ±427 047

Table A1
Aggregation applied to the land cover legend established in the MRV Road Map.

Level 0 – F/NF Level 1 - IPCC Level 2 - National ESA CCI map

Code Class Code Class MRV label Code Class Code Class

2 Non-forest 1 Cropland 1TCF 11 Tree crops 4 Cropland
1FC 12 Field crops
1CXF 13 Shifting cultivation with open to closed forested areas

1 Forest 2 Forest Land 1TCW 21 Forest Plantation 1 Trees cover areas
2FXC 22 Forest with shifting cultivation
2FE 23 Broadleaved (Semi-) evergreen closed forest
2FD 24 Broadleaved (Semi-) deciduous closed forest
2WE 25 Broadleaved (Semi-) evergreen open forest
2WD 26 Broadleaved (Semi-) deciduous open forest

2 Non-forest 3 Grassland 2GL 31 Grasslands 3;6 Grasslands; Lichen Mosses/Sparse vegetation
2T 32 Thicket – –
2S 33 Shrubland 2 Shrubs cover areas

2 Non-forest 4 Wetlands 4SF 41 Aquatic or regularly flooded shrublands 5 Vegetation aquatic or regularly flooded
4HF 42 Aquatic or regularly flooded herbaceous vegetation
7WB 43 Artificial waterbodies 10 Open water
8WB 44 Natural water bodies
17 45 Salt Lake

2 Non-forest 5 Settlements 5 51 Settlements 8 Built up areas
2 Non-forest 6 Other Land 6BS 61 Bare soils 7 Bare areas

6BR 62 Bare rocks
6SS 63 Dunes
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